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CHAPTER 1

User Guide

1.1 Introduction

Mirai: future in japanese.

MiraiML is an asynchronous engine for continuous & autonomous machine learning, built for real-time usage.

• It’s asynchronous because it runs in background, allowing you to execute custom Python code as you interact
with the engine;

• It’s continuous because it can run “forever”, always looking for solutions that can achieve better performances;

• It’s autonomous because it does not wander on the search space blindly and does not perform exhaustive grid
searches. Instead, it combines past attempts to guide its next steps, always allowing itself to jump out of local
minima.

MiraiML improves the chosen metric by searching good hyperparameters and sets of features for base statistical
models, whilst finding smart ways to combine the predictions of those models in order to achieve even higher scores.

But how can MiraiML help me? And how does it even work?

We’re going to address these questions on the next subsections.

1.2 MiraiML usability

Tired of coding the same grid searches, cross-validations, training and predicting scripts over and over? I was. Mi-
raiML does it all with a simple API, so you can spend less time on such mechanical tasks. MiraiML works on the
typical train/test scenario, when the data can fit in the RAM. Let’s explore the API from a bottom-up perspective.

The basic usage flow is represented in the image below:
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1.2.1 Search spaces

MiraiML requires that you define the search spaces in which it will look for solution candidates. In order to instantiate
a search space, you need to use the miraiml.SearchSpace class. A search space is a combination of an id, a
model class and a dictionary of hyperparameters values to be tested. The only requirement is that the model class
must implement a fit method as well as a predict method for regression problems or a predict_proba for
classification problems. For instance, you can use scikit-learn’s models:

>>> from sklearn.linear_model import LinearRegression
>>> from miraiml import SearchSpace

>>> search_space = SearchSpace(
... id = 'Linear Regression',
... model_class = LinearRegression,
... parameters_values = dict(
... fit_intercept = [True, False],
... normalize = [True, False]
... )
... )

miraiml.SearchSpace also allows you to provide a parameters_rules function to deal with prohibitive combi-
nations of hyperparameters. Please refer to its documentation for further understanding.

After you’ve defined your search spaces, the next step is building the configuration object.

1.2.2 Configuration

The configuration for MiraiML’s Engine is defined by an instance of the miraiml.Config class, which tells the
Engine where to save its local files (checkpoints), the problem type, the function to score the candidate solutions, the
search spaces that should be used and a few other things. For instance:

>>> from sklearn.metrics import r2_score
>>> from miraiml import Config

>>> config = Config(
... local_dir = 'miraiml_local',
... problem_type = 'regression',
... score_function = r2_score,
... search_spaces = [search_space]
... )

Alright, now we’re all set to use the Engine.

1.2.3 The Engine

miraiml.Engine provides a straightforward interface to access its functionalities. The instantiation only requires
a configuration object:
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>>> from miraiml import Engine

>>> engine = Engine(config)

Note: You can also provide a on_improvement function that will be executed everytime the engine finds a better
modeling solution. Check out the API documentation for more information.

Let’s use scikit-learn’s classic California Housing dataset as an example:

>>> from sklearn.datasets import fetch_california_housing
>>> import pandas as pd

>>> X, y = fetch_california_housing(return_X_y=True)
>>> data = pd.DataFrame(X)
>>> data['target'] = y

>>> engine.load_train_data(train_data=data, target_column='target')

After the training data is loaded, you can trigger the optimization process with:

>>> engine.restart()

And to interrupt it:

>>> engine.interrupt()

The miraiml.Engine documentation contains the full set of functionalities that are available for you.

1.3 MiraiML internals

MiraiML works in cycles. In each cycle, the Engine tries to find better solutions for each search space and for the
ensemble. There are three main concepts at play here:

• Base models represent solutions in the search space

• Mirai Seeker manages the walk through the search spaces

• Ensembler attempts weighted combinations of base models

1.3.1 Base models

Fit, predict and validate with a single button.

Base models are the fundamental bricks of the optimization process. A base model is a combination of a model class,
a set of parameters and a set of features.

Base models implement a versatile method for predictions, which return predictions for the training data and for the
testing data, as well as the score achieved on the training data.

The mechanics of this process is similar to a cross-validation, with a slight difference: the final score is not the mean
score of each fold. Instead, the array of predictions is built iteratively and then fully compared to the target column.
More precisely:

1. Filter training and testing features

1.3. MiraiML internals 5
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2. Split the training data in N folds

3. For each fold:

• Train the model on the bigger part

• Make predictions for the smaller part

• Make predictions for the testing dataset

4. Compute the score for the entire column of predictions on the training dataset

5. Compute the average of the predictions for the testing dataset

Averaging the predictions for the testing dataset may result in slightly better accuracies than expected.

Pipelines

Pipelines can be used as base models when you want to test various ways of pre-processing your data before fitting it
with an estimator.

If that’s your case, please check out the miraiml.pipeline module.

1.3.2 Mirai Seeker

There can be too many base models in the search space and we may not be able to afford exhausive searches. Thus, a
smart strategy to search good base models is mandatory.

The engine registers optimization attempts on dataframes called histories. These dataframes have columns for each
hyperparameter and each feature, as well as a column for the reported scores. The values of the hyperparameters’
columns are the values of the hyperparameters themselves. The values of the features’ columns are either 0 or 1,
which indicate whether the features were used or not. An example of history dataframe for a K-NN classifier with
three registries would be:

Hyperparameters Features —
n_neighbors weights age gender score
3 ‘uniform’ 1 0 0.82
2 ‘distance’ 0 1 0.76
4 ‘uniform’ 1 1 0.84

As the history grows, it can be used to generate potentially good base models for future optimization attempts. Cur-
rently, the available strategies to create base models are:

• Random Generates a completely random base model.

• Naive The naive strategy iterates over the history columns (except the score) and groups the data by the current
column values using the mean aggregation function on the score column. Each value present on the
current column can be chosen with a probability that is proportional to the mean score from the group by
aggregation.

For instance, if we aggregate the history dataframe above by the column age, the mean score of attempts
in which the feature age was chosen is 0.83 and the mean score of the attempts in which the feature age
was not chosen is 0.76. Now, we choose to use age on the next base model with a probability that’s
proportional to 0.83 and we choose not to with a probability that’s proportional to 0.76.

It’s called Naive because it assumes the strong hypothesis that the columns of history dataframes affect the
score independently.
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• Linear Regression Uses a simple linear regression to model the score as a function of the other history
columns. Categorical columns are processed with One-Hot-Encoding. This strategy makes n/2 guesses
and chooses the best guess according to the linear regression model, where n is the size of the history
dataframe.

The strategy is chosen stochastically according to the following priority rule:

The random strategy will be chosen with a probability of 0.5. If it’s not, the other strategies will be chosen
with equal probabilities.

1.3.3 Ensembler

It is possible to combine the predictions of various base models in order to reach even higher scores. This process is
done by computing a straightforward linear combination of the base models’ predictions.

More precisely, suppose we have a set of base models. For each base model 𝑖, let 𝑡𝑟𝑖 and 𝑡𝑠𝑖 be its predictions for the
training and testing dataset, respectively. The ensemble of the base models is based on a set of coefficients 𝑤 (weights),
for which we can compute the combined predictions 𝐸𝑡𝑟 and 𝐸𝑡𝑠 for the training and testing datasets, respectively,
according to the formula:

(𝐸𝑡𝑟, 𝐸𝑡𝑠) =

(︂∑︀
𝑤𝑖𝑡𝑟𝑖∑︀
𝑤𝑖

,

∑︀
𝑤𝑖𝑡𝑠𝑖∑︀
𝑤𝑖

)︂
With a smart choice of 𝑤, the score for 𝐸𝑡𝑟 may be better than the score of any 𝑡𝑟𝑖.

Now, the obvious question is: how to find a good 𝑤? This is where the concept of ensembling cycles comes into play.

An ensembling cycle is an attempt to generate good weights stochastically, based on the the score of each base model
individually. This is done by using triangular distributions.

The weight of the best base model is drawn from the triangular distribution that varies from 0 to 1, with mode 1.

For every other base model 𝑖 (not a base model with the highest score), the weight is drawn from a triangular distribu-
tion that varies from 0 to range, with mode 0. It means that its weight will most likely be close to 0 and its upperbound
is defined by the range variable.

The value of range should depend on the relative score of the base model. But preventing it from reaching 1 would be
too prohibitive. A solution for this is: range is chosen from a triangular distribution that varies from 0 to 1, with mode
normalized. The variable normalized measures the relative quality of the base model.

The value of normalized is computed by the formula (𝑠𝑖− 𝑠min)/(𝑠max − 𝑠min), where 𝑠𝑖 is the score of the base model
and 𝑠min and 𝑠max are the scores of the worst and the best base models, respectively.

In the end, bad base models can still influence the ensemble, but their probabilities of having high weights are relatively
low.

The number of ensembling cycles depend on the time consumed by the other models. The current rule is:

The time consumed by the ensemble is limited by the total time consumed by all base models, on average.

Warning: The score of the Ensemble may decrease when the engine finds a better base model and updates its
predictions.

1.4 Optimization workflow

The optimization cycle starts by looking for better base models for each search space. Mirai Seeker is responsible for
keeping track of old base models attempts in order to provide good guesses for new attempts. If a better base model is

1.4. Optimization workflow 7
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found for some search space, the ensembler output is updated with the new predictions. Then, after a new solution is
attempted for each search space, the Engine executes the ensembling cycles, looking for better ensembling weights.

Wrapping it all up, the following diagram represents the workflow within an optimization loop:
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CHAPTER 2

The User’s API

miraiml provides the following components:

• miraiml.SearchSpace represents the search space for a base model

• miraiml.Config defines the general behavior for miraiml.Engine

• miraiml.Engine manages the optimization process

• miraiml.pipeline has some features related to pipelines (hot!)

2.1 miraiml.SearchSpace

class miraiml.SearchSpace(id, model_class, parameters_values=None, parame-
ters_rules=<function SearchSpace.<lambda>>)

This class represents the search space of hyperparameters for a base model.

Parameters

• id (str) – The id that will be associated with the models generated within this search
space.

• model_class (type) – Any class that represents a statistical model. It must implement
the methods fit as well as predict for regression or predict_proba for classifica-
tion problems.

• parameters_values (dict, optional, default=None) – A dictionary con-
taining lists of values to be tested as parameters when instantiating objects of
model_class for id.

• parameters_rules (function, optional, default=lambda x: None)
– A function that constrains certain parameters because of the values assumed by oth-
ers. It must receive a dictionary as input and doesn’t need to return anything. Not used
if parameters_values has no keys.

9



MiraiML

Warning: Make sure that the parameters accessed in parameters_rules exist in
the set of parameters defined on parameters_values, otherwise the engine will
attempt to access an invalid key.

Raises NotImplementedError if a model class does not implement fit or none of predict
or predict_proba.

Raises TypeError if some parameter is of a prohibited type.

Raises ValueError if a provided id is not allowed.

Example

>>> import numpy as np
>>> from sklearn.linear_model import LogisticRegression
>>> from miraiml import SearchSpace

>>> def logistic_regression_parameters_rules(parameters):
... if parameters['solver'] in ['newton-cg', 'sag', 'lbfgs']:
... parameters['penalty'] = 'l2'

>>> search_space = SearchSpace(
... id = 'Logistic Regression',
... model_class = LogisticRegression,
... parameters_values = {
... 'penalty': ['l1', 'l2'],
... 'C': np.arange(0.1, 2, 0.1),
... 'max_iter': np.arange(50, 300),
... 'solver': ['newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'],
... 'random_state': [0]
... },
... parameters_rules = logistic_regression_parameters_rules
... )

Warning: Do not allow random_state assume multiple values. If model_class has a
random_state parameter, force the engine to always choose the same value by providing a list with
a single element.

Allowing random_state to assume multiple values will confuse the engine because the scores will be
unstable even with the same choice of hyperparameters and features.

2.2 miraiml.Config

class miraiml.Config(local_dir, problem_type, score_function, search_spaces,
use_all_features=False, n_folds=5, stratified=True, ensemble_id=None,
stagnation=60)

This class defines the general behavior of the engine.

Parameters

• local_dir (str) – The name of the folder in which the engine will save its internal files.
If the directory doesn’t exist, it will be created automatically. .. and / are not allowed to
compose local_dir.
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• problem_type (str) – 'classification' or 'regression'. The problem
type. Multi-class classification problems are not supported.

• search_spaces (list) – The list of miraiml.SearchSpace objects to optimize.
If search_spaces has length 1, the engine will not run ensemble cycles.

• score_function (function) – A function that receives the “truth” and the predictions
(in this order) and returns the score. Bigger scores must mean better models.

• use_all_features (bool, optional, default=False) – Whether to force
MiraiML to always use all features or not.

• n_folds (int, optional, default=5) – The number of folds for the fit-
ting/predicting process. The minimum value allowed is 2.

• stratified (bool, optional, default=True) – Whether to stratify folds on
target or not. Only used if problem_type == 'classification'.

• ensemble_id (str, optional, default=None) – The id for the ensemble. If
none is given, the engine will not ensemble base models.

• stagnation (int or float, optional, default=60) – The amount of time
(in minutes) for the engine to automatically interrupt itself if no improvement happens.
Negative numbers are interpreted as “infinite”.

Warning: Stagnation checks only happen after the engine finishes at least one opti-
mization cycle. In other words, every base model and the ensemble (if set) must be
scored at least once.

Raises NotImplementedError if a model class does not implement the proper method for pre-
diction.

Raises TypeError if some parameter is not of its allowed type.

Raises ValueError if some parameter has an invalid value.

Example

>>> from sklearn.metrics import roc_auc_score
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.tree import DecisionTreeClassifier
>>> from miraiml import SearchSpace, Config

>>> search_spaces = [
... SearchSpace('Naive Bayes', GaussianNB),
... SearchSpace('Decicion Tree', DecisionTreeClassifier)
... ]

>>> config = Config(
... local_dir = 'miraiml_local',
... problem_type = 'classification',
... score_function = roc_auc_score,
... search_spaces = search_spaces,
... use_all_features = False,
... n_folds = 5,
... stratified = True,
... ensemble_id = 'Ensemble',
... stagnation = -1
... )

2.2. miraiml.Config 11
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2.3 miraiml.Engine

class miraiml.Engine(config, on_improvement=None)
This class offers the controls for the engine.

Parameters

• config (miraiml.Config) – The configurations for the behavior of the engine.

• on_improvement (function, optional, default=None) – A function that
will be executed everytime the engine finds an improvement for some id. It must receive a
status parameter, which is the return of the method request_status() (an instance
of miraiml.Status).

Raises TypeError if config is not an instance of miraiml.Config or on_improvement
(if provided) is not callable.

Example

>>> from sklearn.metrics import roc_auc_score
>>> from sklearn.naive_bayes import GaussianNB
>>> from sklearn.tree import DecisionTreeClassifier
>>> from miraiml import SearchSpace, Config, Engine

>>> search_spaces = [
... SearchSpace('Naive Bayes', GaussianNB),
... SearchSpace('Decision Tree', DecisionTreeClassifier)
... ]

>>> config = Config(
... local_dir = 'miraiml_local',
... problem_type = 'classification',
... score_function = roc_auc_score,
... search_spaces = search_spaces,
... ensemble_id = 'Ensemble'
... )

>>> def on_improvement(status):
... print('Scores:', status.scores)

>>> engine = Engine(config, on_improvement=on_improvement)

is_running Tells whether the engine is running or not.
interrupt Makes the engine stop on the first opportunity.
load_train_data Interrupts the engine and loads the train dataset.
load_test_data Interrupts the engine and loads the test dataset.
shuffle_train_data Interrupts the engine and shuffles the training data.
reconfigure Interrupts the engine and loads a new configuration.
restart Interrupts the engine and starts again from last

checkpoint (if any).
request_status Queries the current status of the engine.

is_running()
Tells whether the engine is running or not.

Return type bool
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Returns True if the engine is running and False otherwise.

interrupt()
Makes the engine stop on the first opportunity.

Note: This method is not asynchronous. It will wait until the engine stops.

load_train_data(train_data, target_column, restart=False)
Interrupts the engine and loads the train dataset. All of its columns must be either instances of str or
int.

Warning: Loading new training data will always trigger the loss of history for optimization.

Parameters

• train_data (pandas.DataFrame) – The training data.

• target_column (str or int) – The target column identifier.

• restart (bool, optional, default=False) – Whether to restart the engine
after updating data or not.

Raises TypeError if train_data is not an instance of pandas.DataFrame.

Raises ValueError if target_column is not a column of train_data or if some col-
umn name is of a prohibited type.

load_test_data(test_data, restart=False)
Interrupts the engine and loads the test dataset. All of its columns must be columns in the train data.

The test dataset is the one for which we don’t have the values for the target column. This method should
be used to load data in production.

Warning: This method can only be called after miraiml.Engine.load_train_data()

Parameters

• test_data (pandas.DataFrame, optional, default=None) – The testing
data. Use the default value if you don’t need to make predictions for data with unknown
labels.

• restart (bool, optional, default=False) – Whether to restart the engine
after loading data or not.

Raises RuntimeError if this method is called before loading the train data.

Raises ValueError if the column names are not consistent.

clean_test_data(restart=False)
Cleans the test data from the buffer.

Note: Keep in mind that if you don’t intend to make predictions for unlabeled data, the engine will run
faster with a clean test data buffer.

2.3. miraiml.Engine 13
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Parameters restart (bool, optional, default=False) – Whether to restart the
engine after cleaning test data or not.

shuffle_train_data(restart=False)
Interrupts the engine and shuffles the training data.

Parameters restart (bool, optional, default=False) – Whether to restart the
engine after shuffling data or not.

Raises RuntimeError if the engine has no data loaded.

Note: It’s a good practice to shuffle the training data periodically to avoid overfitting on a particular
folding pattern.

reconfigure(config, restart=False)
Interrupts the engine and loads a new configuration.

Warning: Reconfiguring the engine will always trigger the loss of history for optimization.

Parameters

• config (miraiml.Config) – The configurations for the behavior of the engine.

• restart (bool, optional, default=False) – Whether to restart the engine
after reconfiguring it or not.

restart()
Interrupts the engine and starts again from last checkpoint (if any). It is also used to start the engine for
the first time.

Raises RuntimeError if no data is loaded.

request_status()
Queries the current status of the engine.

Return type miraiml.Status

Returns The current status of the engine in the form of a dictionary. If no score has been
computed yet, returns None.

2.4 miraiml.Status

class miraiml.Status(**kwargs)
Represents the current status of the engine. Objects of this class are not supposed to be instantiated by the user.
Rather, they are returned by the miraiml.Engine.request_status() method.

The following attributes are accessible:

• best_id: the id of the best base model (or ensemble)

• scores: a dictionary containing the current score of each id

• train_predictions: a pandas.DataFrame object containing the predictions for the train data
for each id

14 Chapter 2. The User’s API
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• test_predictions: a pandas.DataFrame object containing the predictions for the test data for
each id

• ensemble_weights: a dictionary containing the ensemble weights for each base model id

• base_models: a dictionary containing the characteristics of each base model (accessed by its respective
id)

• histories: a dictionary of pandas.DataFrame objects for each id, containing the history
of base models attempts and their respective scores. Hyperparameters columns end with the
'__(hyperparameter)' suffix and features columns end with the '__(feature)' suffix. The
score column can be accessed with the key 'score'. For more information, please check the User
Guide.

The characteristics of each base model are represent by dictionaries, containing the following keys:

• 'model_class': The name of the base model’s modeling class

• 'parameters': The dictionary of hyperparameters values

• 'features': The list of features used

build_report(include_features=False)
Returns the report of the current status of the engine in a formatted string.

Parameters include_features (bool, optional, default=False) – Whether
to include the list of features on the report or not (may cause some visual mess).

Return type str

Returns The formatted report.

2.5 miraiml.pipeline

miraiml.pipeline contains a function that lets you build your own pipeline classes. It also contains a few pre-
defined pipelines for baselines.

compose A function that defines pipeline classes dinamically.
NaiveBayesBaseliner This is a baseline pipeline for classification problems.
LinearRegressionBaseliner This is a baseline pipeline for regression problems.

miraiml.pipeline.compose(steps)
A function that defines pipeline classes dinamically. It builds a pipeline class that can be instantiated with
particular parameters for each of its transformers/estimator without needing to call set_params as you would
do with scikit-learn’s Pipeline when performing hyperparameters optimizations.

Similarly to scikit-learn’s Pipeline, steps is a list of tuples containing an alias and the respective pipeline
element. Although, since this function is a class factory, you shouldn’t instantiate the transformer/estimator as
you would do with scikit-learn’s Pipeline. Thus, this is how compose() should be called:

>>> from sklearn.ensemble import RandomForestClassifier
>>> from sklearn.preprocessing import StandardScaler

>>> from miraiml.pipeline import compose

>>> MyPipelineClass = compose(
... steps = [
... ('scaler', StandardScaler), # StandardScaler instead of
→˓StandardScaler() (continues on next page)

2.5. miraiml.pipeline 15
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(continued from previous page)

... ('rfc', RandomForestClassifier) # No instantiation either

... ]

... )

And then, in order to instantiate MyPipelineClass with the desired parameters, you just need to refer to
them as a concatenation of their respective class aliases and their names, separated by '__'.

>>> pipeline = MyPipelineClass(scaler__with_mean=False, rfc__max_depth=3)

If you want to know which parameters you’re allowed to play with, just call get_params:

>>> params = pipeline.get_params()
>>> print("\n".join(params))
scaler__with_mean
scaler__with_std
rfc__bootstrap
rfc__class_weight
rfc__criterion
rfc__max_depth
rfc__max_features
rfc__max_leaf_nodes
rfc__min_impurity_decrease
rfc__min_impurity_split
rfc__min_samples_leaf
rfc__min_samples_split
rfc__min_weight_fraction_leaf
rfc__n_estimators
rfc__n_jobs
rfc__oob_score
rfc__random_state
rfc__verbose
rfc__warm_start

You can check the available methods for your instantiated pipelines on the documentation for miraiml.
core.BasePipelineClass, which is the class from which the composed classes inherit from.

The intended purpose of such pipeline classes is that they can work as base models to build instances of
miraiml.SearchSpace.

>>> from miraiml import SearchSpace

>>> search_space = SearchSpace(
... id='MyPipelineClass',
... model_class=MyPipelineClass,
... parameters_values=dict(
... scaler__with_mean=[True, False],
... scaler__with_std=[True, False],
... rfc__max_depth=[3, 4, 5, 6]
... )
... )

Parameters steps (list) – The list of pairs (alias, class) to define the pipeline.

Warning: Repeated aliases are not allowed and none of the aliases can start with numbers
or contain '__'.
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The classes used to compose a pipeline must implement get_params and set_params,
such as scikit-learn’s classes, or compose() will break.

Return type type

Returns The composed pipeline class

Raises TypeError if an alias is not a string.

Raises ValueError if an alias has an invalid name.

Raises NotImplementedError if some class of the pipeline does not implement the required
methods.

class miraiml.pipeline.NaiveBayesBaseliner
This is a baseline pipeline for classification problems. It’s composed by the following transformers/estimator:

1. sklearn.preprocessing.OneHotEncoder

2. sklearn.impute.SimpleImputer

3. sklearn.preprocessing.MinMaxScaler

4. sklearn.naive_bayes.GaussianNB

The available parameters to tweak are:

>>> from miraiml.pipeline import NaiveBayesBaseliner

>>> for param in NaiveBayesBaseliner().get_params():
... print(param)
...
ohe__categorical_features
ohe__categories
ohe__drop
ohe__dtype
ohe__handle_unknown
ohe__n_values
ohe__sparse
impute__add_indicator
impute__fill_value
impute__missing_values
impute__strategy
impute__verbose
min_max__feature_range
naive__priors
naive__var_smoothing

class miraiml.pipeline.LinearRegressionBaseliner
This is a baseline pipeline for regression problems. It’s composed by the following transformers/estimator:

1. sklearn.preprocessing.OneHotEncoder

2. sklearn.impute.SimpleImputer

3. sklearn.preprocessing.MinMaxScaler

4. sklearn.linear_model.LinearRegression

The available parameters to tweak are:
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>>> from miraiml.pipeline import LinearRegressionBaseliner

>>> for param in LinearRegressionBaseliner().get_params():
... print(param)
...
ohe__categorical_features
ohe__categories
ohe__drop
ohe__dtype
ohe__handle_unknown
ohe__n_values
ohe__sparse
impute__add_indicator
impute__fill_value
impute__missing_values
impute__strategy
impute__verbose
min_max__feature_range
lin_reg__fit_intercept
lin_reg__n_jobs
lin_reg__normalize
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CHAPTER 3

Internal modules’ API

The documentation related to these modules is meant for developers.

3.1 miraiml.core

miraiml.core contains internal classes responsible for the optimization process.

class miraiml.core.BaseModel(model_class, parameters, features)
Represents an element from the search space, defined by an instance of miraiml.SearchSpace and a set
of features.

Read more in the User Guide.

Parameters

• model_class (type) – A statistical model class that must implement the methods fit
and predict for regression or predict_proba classification problems.

• parameters (dict) – The parameters that will be used to instantiate objects of
model_class.

• features (list) – The list of features that will be used to train the statistical model.

predict(X_train, y_train, X_test, config)
Performs the predictions for the training and testing datasets and also computes the score of the model.

Parameters

• X_train (pandas.DataFrame) – The dataframe that contains the training inputs for
the model.

• y_train (pandas.Series or numpy.ndarray) – The training targets for the
model.

• X_test (pandas.DataFrame) – The dataframe that contains the testing inputs for the
model.
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• config (miraiml.Config) – The configuration of the engine.

Return type tuple

Returns

(train_predictions, test_predictions, score)

• train_predictions: The predictions for the training dataset

• test_predictions: The predictions for the testing dataset

• score: The score of the model on the training dataset

Raises RuntimeError when fitting or predicting doesn’t work.

miraiml.core.dump_base_model(base_model, path)
Saves the characteristics of a base model as a checkpoint.

Parameters

• base_model (miraiml.core.BaseModel) – The base model to be saved

• path (str) – The path to save the base model

Return type tuple

Returns (train_predictions, test_predictions, score)

miraiml.core.load_base_model(model_class, path)
Loads the characteristics of a base model from disk and returns its respective instance of miraiml.core.
BaseModel.

Parameters

• model_class (type) – The model class related to the base model

• path (str) – The path to load the base model from

Return type miraiml.core.BaseModel

Returns The base model loaded from disk

class miraiml.core.MiraiSeeker(search_spaces, all_features, config)
This class implements a smarter way of searching good parameters and sets of features.

Read more in the User Guide.

Parameters

• base_models_ids (list) – The list of base models’ ids to keep track of.

• all_features (list) – A list containing all available features.

• config (miraiml.Config) – The configuration of the engine.

reset()
Deletes all base models registries.

parameters_features_to_dataframe(parameters, features, score)
Creates an entry for a history.

Parameters

• parameters (list) – The set of parameters to transform.

• parameters – The set of features to transform.

• score (float) – The score to transform.
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register_base_model(id, base_model, score)
Registers the performance of a base model and its characteristics.

Parameters

• id (str) – The id associated with the base model.

• base_model (miraiml.core.BaseModel) – The base model being registered.

• score (float) – The score of base_model.

is_ready(id)
Tells whether the history of an id is large enough for more advanced strategies or not.

Parameters id (str) – The id to be inspected.

Return type bool

Returns Whether id can be used to generate parameters and features lists or not.

seek(id)
Manages the search strategy for better solutions.

With a probability of 0.5, the random strategy will be chosen. If it’s not, the other strategies will be chosen
with equal probabilities.

Parameters id (str) – The id for which a new base model is required.

Return type miraiml.core.BaseModel

Returns The next base model for exploration.

Raises KeyError if parameters_rules tries to access an invalid key.

random_search(id)
Generates completely random sets of parameters and features.

Parameters all_features (list) – The list of available features.

Return type tuple

Returns (parameters, features) Respectively, the dictionary of parameters and the list
of features that can be used to generate a new base model.

naive_search(id)
Characteristics that achieved higher scores have independently higher chances of being chosen again.

Parameters id (str) – The id for which we want a new set of parameters and features.

Return type tuple

Returns (parameters, features) Respectively, the dictionary of parameters and the list
of features that can be used to generate a new base model.

linear_regression_search(id)
Uses the history to model the score with a linear regression. Guesses the scores of n/2 random sets of
parameters and features, where n is the size of the history. The one with the highest score is chosen.

Parameters id (str) – The id for which we want a new set of parameters and features.

Return type tuple

Returns (parameters, features) Respectively, the dictionary of parameters and the list
of features that can be used to generate a new base model.
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class miraiml.core.Ensembler(base_models_ids, y_train, train_predictions_df,
test_predictions_df, scores, config)

Performs the ensemble of the base models and optimizes its weights.

Read more in the User Guide.

Parameters

• y_train (pandas.Series or numpy.ndarray) – The target column.

• base_models_ids (list) – The list of base models’ ids to keep track of.

• train_predictions_df (pandas.DataFrame) – The dataframe of predictions for
the training dataset.

• test_predictions_df (pandas.DataFrame) – The dataframe of predictions for
the testing dataset.

• scores (dict) – The dictionary of scores.

• config (miraiml.Config) – The configuration of the engine.

interrupt()
Sets an internal flag to interrupt the optimization process on the first opportunity.

update()
Updates the ensemble with the newest predictions from the base models.

gen_weights()
Generates the ensemble weights according to the score of each base model. Higher scores have higher
chances of generating higher weights.

Return type dict

Returns A dictionary containing the weights for each base model id.

ensemble(weights)
Performs the ensemble of the current predictions of each base model.

Parameters weights (dict) – A dictionary containing the weights related to the id of each
base model.

Return type tuple

Returns

(train_predictions, test_predictions, score)

• train_predictions: The ensemble predictions for the training dataset

• test_predictions: The ensemble predictions for the testing dataset

• score: The score of the ensemble on the training dataset

optimize(max_duration)
Performs ensembling cycles for max_duration seconds.

Parameters max_duration (float) – The maximum duration allowed for the optimization
process.

Return type bool

Returns True if a better set of weights was found and False otherwise.

class miraiml.core.BasePipelineClass(**params)
This is the base class for your custom pipeline classes.
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Warning: Instantiating this class directly does not work.

get_params()
Gets the list of parameters that can be set.

Parameters X (iterable) – Data to predict on.

Return type list

Returns The list of allowed parameters

set_params(**params)
Sets the parameters for the pipeline. You can check the parameters that are allowed to be set by calling
get_params().

Return type miraiml.core.BasePipelineClass

Returns self

fit(X, y)
Fits the pipeline to X using y as the target.

Parameters

• X (iterable) – The training data.

• y (iterable) – The target.

Return type miraiml.core.BasePipelineClass

Returns self

predict(X)
Predicts the class for each element of X in case of classification problems or the estimated target value in
case of regression problems.

Parameters X (iterable) – Data to predict on.

Return type numpy.ndarray

Returns The set of predictions

predict_proba(X)
Returns the probabilities for each class. Available only if your end estimator implements it.

Parameters X (iterable) – Data to predict on.

Return type numpy.ndarray

Returns The probabilities for each class

3.2 miraiml.util

miraiml.util provides utility functions that are used by higher level modules.

miraiml.util.load(path)
A clean pickle.load wrapper for binary files.

Parameters path (string) – The path of the binary file to be loaded.

Return type object

Returns The loaded object.
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miraiml.util.dump(obj, path)
Optimizes the process of writing objects on disc by triggering a thread.

Parameters

• obj (object) – The object to be dumped to the binary file.

• path (string) – The path of the binary file to be written.

miraiml.util.sample_random_len(lst)
Returns a sample of random size from the list lst. The minimum length of the returned list is 1.

Parameters lst (list) – A list containing the elements to be sampled.

Return type sampled_lst: list

Returns The randomly sampled elements from lst.

miraiml.util.is_valid_filename(filename)
Tells whether a string can be used as a safe file name or not.

Parameters filename (str) – The file name.

Return type bool

Returns Whether filename is a valid file name or not.

miraiml.util.is_valid_pipeline_name(pipeline_name)
Tells whether a string can be used to compose pipelines or not.

Parameters pipeline_name (str) – The file name.

Return type bool

Returns Whether pipeline_name is a valid name or not.
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Example notebook

This notebook will cover a regression case using scikit-learn’s California Housing dataset.

from sklearn.datasets import fetch_california_housing
import pandas as pd

X, y = fetch_california_housing(data_home='miraiml_local', return_X_y=True)
data = pd.DataFrame(X)
data['target'] = y

Downloading Cal. housing from https://ndownloader.figshare.com/files/5976036 to
→˓miraiml_local

Let’s split the data into training and testing data. In a real case scenario, we’d only have labels for training data.

from sklearn.model_selection import train_test_split

train_data, test_data = train_test_split(data, test_size=0.2)

4.1 Building the search spaces

Let’s compare (and ensemble) a KNeighborsRegressor and a pipeline composed by StandardScaler and a
LinearRegression.

from sklearn.neighbors import KNeighborsRegressor
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler

from miraiml import SearchSpace
from miraiml.pipeline import compose

Pipeline = compose(

(continues on next page)
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(continued from previous page)

[('scaler', StandardScaler), ('lin_reg', LinearRegression)]
)

search_spaces = [
SearchSpace(

id='k-NN Regressor',
model_class=KNeighborsRegressor,
parameters_values=dict(

n_neighbors=range(2, 9),
weights=['uniform', 'distance'],
p=range(2, 5)

)
),
SearchSpace(

id='Pipeline',
model_class=Pipeline,
parameters_values=dict(

scaler__with_mean=[True, False],
scaler__with_std=[True, False],
lin_reg__fit_intercept=[True, False]

)
)

]

4.2 Configuring the Engine

For this demonstration, let’s use r2_score to evaluate our modeling.

from sklearn.metrics import r2_score

from miraiml import Config

config = Config(
local_dir='miraiml_local',
problem_type='regression',
score_function=r2_score,
search_spaces=search_spaces,
ensemble_id='Ensemble'

)

4.3 Triggering the Engine

Let’s also print the scores everytime the Engine finds a better solution.

from miraiml import Engine

def on_improvement(status):
scores = status.scores
for key in sorted(scores.keys()):

print('{}: {}'.format(key, round(scores[key], 3)), end='; ')
print()

(continues on next page)
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(continued from previous page)

engine = Engine(config=config, on_improvement=on_improvement)

Now we’re ready to load the data.

engine.load_train_data(train_data, 'target')
engine.load_test_data(test_data)

Let’s leave it running for 2 minutes, shuffle the train data, let it run for 2 more minutes and then interrupt it.

from time import sleep

engine.restart()

sleep(120)

print('\nShuffling train data')
engine.shuffle_train_data(restart=True)

sleep(120)

engine.interrupt()

Ensemble: 0.118; Pipeline: -3.214; k-NN Regressor: 0.118;
Ensemble: 0.142; Pipeline: -3.214; k-NN Regressor: 0.142;
Ensemble: 0.143; Pipeline: 0.467; k-NN Regressor: 0.142;
Ensemble: 0.474; Pipeline: 0.467; k-NN Regressor: 0.142;
Ensemble: 0.473; Pipeline: 0.467; k-NN Regressor: 0.172;
Ensemble: 0.509; Pipeline: 0.503; k-NN Regressor: 0.172;
Ensemble: 0.509; Pipeline: 0.503; k-NN Regressor: 0.172;
Ensemble: 0.525; Pipeline: 0.503; k-NN Regressor: 0.321;
Ensemble: 0.539; Pipeline: 0.503; k-NN Regressor: 0.321;
Ensemble: 0.552; Pipeline: 0.503; k-NN Regressor: 0.521;
Ensemble: 0.566; Pipeline: 0.503; k-NN Regressor: 0.521;
Ensemble: 0.565; Pipeline: 0.503; k-NN Regressor: 0.538;
Ensemble: 0.566; Pipeline: 0.503; k-NN Regressor: 0.538;
Ensemble: 0.566; Pipeline: 0.503; k-NN Regressor: 0.538;
Ensemble: 0.566; Pipeline: 0.512; k-NN Regressor: 0.538;
Ensemble: 0.566; Pipeline: 0.512; k-NN Regressor: 0.538;
Ensemble: 0.566; Pipeline: 0.512; k-NN Regressor: 0.538;
Ensemble: 0.587; Pipeline: 0.512; k-NN Regressor: 0.544;
Ensemble: 0.597; Pipeline: 0.536; k-NN Regressor: 0.544;
Ensemble: 0.598; Pipeline: 0.536; k-NN Regressor: 0.544;
Ensemble: 0.648; Pipeline: 0.536; k-NN Regressor: 0.659;
Ensemble: 0.666; Pipeline: 0.536; k-NN Regressor: 0.659;
Ensemble: 0.68; Pipeline: 0.536; k-NN Regressor: 0.665;
Ensemble: 0.681; Pipeline: 0.536; k-NN Regressor: 0.665;
Ensemble: 0.681; Pipeline: 0.536; k-NN Regressor: 0.665;
Ensemble: 0.681; Pipeline: 0.536; k-NN Regressor: 0.665;
Ensemble: 0.695; Pipeline: 0.584; k-NN Regressor: 0.665;
Ensemble: 0.698; Pipeline: 0.584; k-NN Regressor: 0.665;
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665;
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665;
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665;
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665;
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665;

(continues on next page)
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Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665;
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.665;
Ensemble: 0.698; Pipeline: 0.597; k-NN Regressor: 0.687;
Ensemble: 0.7; Pipeline: 0.597; k-NN Regressor: 0.687;
Ensemble: 0.7; Pipeline: 0.597; k-NN Regressor: 0.687;
Ensemble: 0.738; Pipeline: 0.597; k-NN Regressor: 0.72;
Ensemble: 0.738; Pipeline: 0.597; k-NN Regressor: 0.72;
Ensemble: 0.738; Pipeline: 0.597; k-NN Regressor: 0.72;
Ensemble: 0.754; Pipeline: 0.597; k-NN Regressor: 0.753;
Ensemble: 0.757; Pipeline: 0.597; k-NN Regressor: 0.753;
Ensemble: 0.757; Pipeline: 0.597; k-NN Regressor: 0.753;
Ensemble: 0.757; Pipeline: 0.597; k-NN Regressor: 0.753;
Ensemble: 0.757; Pipeline: 0.597; k-NN Regressor: 0.753;

Shuffling train data
Ensemble: 0.757; Pipeline: 0.596; k-NN Regressor: 0.753;
Ensemble: 0.757; Pipeline: 0.596; k-NN Regressor: 0.753;
Ensemble: 0.757; Pipeline: 0.596; k-NN Regressor: 0.753;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;
Ensemble: 0.758; Pipeline: 0.596; k-NN Regressor: 0.755;

4.4 Engine’s status analysis

status = engine.request_status()

Let’s see the status report.

print(status.build_report(include_features=True))

########################
best id: Ensemble
best score: 0.7583702712570008
########################
ensemble weights:

k-NN Regressor: 0.4325346249356786
Pipeline: 0.06615069839850787

########################
all scores:

Ensemble: 0.7583702712570008
k-NN Regressor: 0.7545806614607227
Pipeline: 0.5963819838101254

########################
id: Pipeline
model class: MiraiPipeline

(continues on next page)
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n features: 8
parameters:

lin_reg__fit_intercept: True
scaler__with_mean: False
scaler__with_std: False

features: 0, 1, 2, 3, 4, 5, 6, 7
########################
id: k-NN Regressor
model class: KNeighborsRegressor
n features: 6
parameters:

n_neighbors: 6
p: 2
weights: distance

features: 0, 2, 3, 5, 6, 7

4.4.1 k-NN Regressor’s history

How does the k-NN Regressor’s scores change with n_neighbors, on average?

import matplotlib.pyplot as plt
%matplotlib inline

knn_history = status.histories['k-NN Regressor']

knn_history[['n_neighbors__(hyperparameter)', 'score']]\
.groupby('n_neighbors__(hyperparameter)').mean()\
.plot.bar()

plt.show()

png
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We can also see how the presence of features (0 or 1) correlate with the score. These results can work as some sort of
feature importance.

knn_history[[col for col in knn_history if col.endswith('(feature)')] + ['score']]\
.corr()['score'][:-1]\
.sort_values()\
.plot.bar(label='Correlation')

plt.legend()
plt.show()

png

4.4.2 Theoretical performance in production

Again, in practice we wouldn’t have labels for test_data. But since we do have labels here, how would MiraiML
perform on the test dataset?

r2_score(test_data['target'], status.test_predictions['Ensemble'])

0.7802410717298023
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